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Abstract

Previous route choice studies treated uncertainties as randomness; however, it is argued that other uncertainties exist beyond
random e↵ects. As a general modeling framework for route choice under uncertainties, this paper presents a model of route
choice that incorporates hyperpath and network generalized extreme-value-based link choice models. Accounting for the travel
time uncertainty, numerical studies of specified models within the proposed framework are conducted. The modeling framework
may be helpful in various research contexts dealing with both randomness and other non-probabilistic uncertainties that cannot be
exactly perceived.
c� 2015 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the Scientific Committee of ISTTT21.
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1. Introduction

1.1. The short story of route choice studies

Route choice is one of the most important issues studied in travel behavior and transportation network analyses.
The comprehensive review by Prato (2009) summarizes the status quo and the future research directions of route
choice studies. As Prato (2009) argued, route choice models evolved, to a certain extent, with the enhancement of
random utility-based discrete choice models (Ben-Akiva and Lerman, 1985). Although the multinomial logit (MNL)
model has been widely used in practice due to its simplicity, it cannot capture the complex correlation structure among
overlapped routes, due to the property of independence from irrelevant alternatives (IIA). The probit model (e.g.,
Daganzo and She� 1997; Yai et al. 1998) or error component (mixed) logit model (e.g., Frejinger and Bierlaire 2007)
could accommodate such a correlation structure; however, exhaustive Monte Carlo simulations would be required to
compute the choice probabilities. Therefore, the closed-form choice model, particularly the family of generalized
extreme-value (GEV) models (McFadden, 1978), would also be attractive. Nested logit (NL) models and cross-nested
logit (CNL) models have helped to advance route choice studies, with application to tra�c assignment (e.g., Vovsha
and Behkor, 1998). The network GEV model (N-GEV) elaborates on this idea further (Bierlaire, 2002; Daly and
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Bierlaire, 2006). In the N-GEV model, a broad class of networks is used to generalize the use of trees to represent
(cross) NL models in the network representation. At present, the N-GEV model would be the most general operational
model in the GEV-based discrete choice family. As an application in the context of route choice, Papola and Marzano
(2013) proposed a joint-network GEV model (JNG) to capture the complex correlation (network) structure using a
closed-form formulation.

In route choice modeling and its application to assignment calculations, the means by which the set of alternative
routes (a route choice set) is constructed is particularly important, regardless of the approach (i.e., explicit versus
implicit). Bovy (2009) provided a synthetic review of route choice modeling, set mainly from behavioral perspectives.
There are two camps of route choice modeling studies. The first camp generates multiple routes as a choice set,
whether deterministic or probabilistic, by explicitly using methods such as deterministic approaches (e.g., K-shortest
paths of Eppstein (1998) or the labeling approach of Ben-Akiva et al. (1984)) or probabilistic generation of a set
(e.g., Cascetta and Papola, 2001), and then applies the discrete choice model for the given set of route alternatives.
Despite these methodological developments, new models (e.g., Freginger et al., 2009; Flötteröd and Bierlaire, 2013)
continue to be developed; however, the generation of a route choice set tends to be arbitrary and is still open to debate.
The second camp follows the approach outlined in seminal work by Dial (1971), albeit developed for stochastic
network loading in tra�c assignments that proposed avoiding explicit path enumeration. Dial (1971) defined so-called
“e�cient paths” involving a forward pass from the origin based on the proportions determined using the sequential
MNL model, and working backward from the destination. In line with this approach, several alternative approaches to
Dial’s method were developed by Bell (1995) and Akamatsu (1996), among others. Both Bell (1995) and Akamatsu
(1996) argued that the e�cient path may ignore realistic paths that were actually attractive to drivers but were assigned
zero flow. Instead, they proposed alternative methods based on the more general idea of a link-based Markov decision
process. In this approach, the choice set was not limited to e�cient paths but included any path that resulted in a
sub-camp of the second camp that also required no path enumeration. Recently, Fosgerau et al. (2013) suggested the
recursive logit model (also known as the sequential logit model) for the unrestricted (infinite) path set, along with the
notion of “link size”, referring to the concept of path size (Ben-Akiva and Bierlaire, 1999). In the same year, Papola
and Marzano (2013) proposed the JNG model to allow implicit route enumeration using a Dial-like algorithm. Hara
and Akamatsu (2012) formulated a stochastic user equilibrium (SUE) problem using the N-GEV route choice model
and proposed an e�cient solution algorithm without explicit route enumeration.

Route choice for transit passengers and transit assignment have proven more complicated than private vehicle net-
works due to transit frequencies, which make the route choice behavior more complex. Because public transportation
usually operates according to schedules or predetermined service frequencies, the total travel time may vary due to the
change in the waiting times. Transit assignment, as it relates to common bus-line problems (Chriqui and Robillard,
1975), provides insight into solving the transit route choice problem by suggesting a probabilistic framework in calcu-
lating the expected travel time including waiting time at transit stops. Based on this framework, the frequency-based
transit assignment was established (Nguyen and Pallottino, 1988; Spiess and Florian, 1989), as well as the concept
of “hyperpath” (Nguyen and Pallottino, 1988), which has since become quite popular in frequency-based transit as-
signments. According to the well-known assignment algorithm of Spiess and Florian (1989), a hyperpath is generated
with a backward pass, followed by assignment of the proportions to the optimal strategy hyperpath with a forward
pass; this approach is quite similar to Dial’s algorithm. Both algorithms generate the choice set implicitly, but they
have di↵erent rules in judging attractive/e�cient links. Dial’s rule is intuitive, while that of Spiess and Florian is
based on the concept of optimal strategy.

Some studies in transit assignments have revealed the importance of discrete choice models. Nguyen et al. (1998)
incorporated a Dial-like sequential logit model into the hyperpath model. Florian and Constantin (2012) modified
their logit choices in strategy transit assignments by including short walks to access attractive transit paths. With the
accommodation of discrete choice models, the optimal strategy models for transit networks become more behaviorally
realistic. Schmöcker et al. (2013) built a two-level model in which the upper level is constrained by logit choice, while
the lower level is constrained by the frequency property; the model parameters are estimated using smart card data.

1.2. Route choice under uncertainty

Although route choice behavior under some stochastic conditions of the drivers’ environment, such as travel-time
variability, can be empirically modeled, in line with the discrete choice framework (e.g., de Palma and Picard, 2005),
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the error term of random utility generally stands for randomness only and can be generally represented by some
parametric probability distribution. However, several other uncertainties in tra�c conditions (e.g., tra�c incidents or
network disruption) may not necessarily be modeled by a specific probability distribution and these are classified as
non-probabilistic uncertainties.

The concept of hyperpath has also been applied to adaptive/policy-based routing (Miller-Hooks, 2001; Gao and
Chabini, 2006; and Bell, 2009, among others). However, here, we focused on studies that dealt with uncertainties with
the hyperpath methodology because hyperpath results are rooted in uncertainties. These uncertainties are interpreted
di↵erently in di↵erent studies (e.g., waiting time for transit lines (Spiess and Florian, 1989), stochastic time-dependent
link travel time (Miller-Hooks, 2001; Gao and Chabini, 2006), and exposure to potential maximum delays (Bell, 2009;
Bell et al., 2012). However, the behavioral basis remains weak; thus, the link proportion results may be unrealistic.

1.3. Road map from previous studies to this study

In an attempt to integrate the above-mentioned points, this paper proposes a novel model for general-purpose route
choice under uncertainties, incorporating both randomness and non-probabilistic uncertainties. Based on Dial (1971)
and Spiess and Florian (1989), Nguyen et al. (1998) integrates the hyperpath with the sequential logit choice model.
As an improvement of Dial (1971), Hara and Akamatsu (2012) and Papola and Marzano (2013) apply the N-GEV
choice model to e�cient paths. By integrating previous studies, this study presents a new hyperpath-based N-GEV
model. The road map of the development of route choice models from previous studies to the present study is shown
in Figure 1.

In this study, a hyperpath-based N-GEV model was developed to analyze route choice under general uncertainties.
On finding the optimal strategy under uncertainties, the model was modified using the hyperpath concept, which has
been widely developed in the frequency-based transit assignment literature but can be extended to risk-averse route
navigation of private vehicles as well. The GEV-based choice model was incorporated when making link choices
from the hyperpath at decision nodes (e.g., intersections), similar to the N-GEV model. In the proposed model,
probabilistic randomness and non-probabilistic uncertainties that a↵ect route choices (e.g., potential travel delay or
network disruption risks) were evaluated as a whole, and the behavioral implications of complex network correlation
structures were considered.

With the integration of optimal strategies and an N-GEV-type link-choice formula, the proposed model can be used
to describe route choice behavior under various uncertainties (e.g., travel time variability, tra�c incidents, or network
disruption) more flexibly. The basic model described in this paper relied on historical observations of uncertainties
for empirical calibration of the model; however, it should be possible to extend the model to dynamic, real-time cases
in future research.

The rest of the paper is organized as follows. Section 2 proposes the hyperpath-based N-GEV route choice model.
Section 3 describes the algorithm used to determine the optimal strategy, along with the N-GEV proportions. Nu-

Spiess and Florian (1989):
optimal strategy hyperpath

& proportional to frequency

Dial (1971): e�cient
paths & sequential logit

Nguyen et al. (1998):
optimal strategy hyper-
path & sequential logit

Hara and Akamatsu (2012);
Papola and Marzano (2013):

e�cient paths & N-GEV

This study: optimal strat-
egy hyperpath & N-GEV

Fig. 1. Road map from previous studies to this study
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merical simulations are discussed in Section 4 using an 8 ⇥ 8 grid network. Conclusions are presented in Section
5.

2. Hyperpath-based Network Generalized Extreme Value (N-GEV) Route Choice Model

2.1. Model setup

Nomenclature

a(i, j) ⌘ a link a from tail node i to head node j
i(a) ⌘ i, j(a) ⌘ j tail and head nodes of link a
Hr,s ⌘ H strategic hyperpath, namely path strategies given an origin and destination pair
IH nodes involved in H
AH links involved in H
A�i , A

+
i incoming and outgoing links of node i

A+H
i hyperpath (attractive) links going out of node i

Va deterministic link-specific utility of traversal through link a
Vi deterministic node-specific utility of traversal through node i, which is associated

with exposure to downstream non-probabilistic uncertainties
Vis deterministic utility of a strategy using node i to reach destination s
pa, pi marginal link choice probability and respective node choice probability
Pa|i ⌘ Pa conditional probability of selecting link a when reaching node i
↵an�1,an non-negative degree of membership of an�1 to an,

P
an�12A�i(an )

↵an�1,an = 1
✓an non-negative homogeneity parameter associated with link an

Consider a driver driving from the origin r to the destination s. Each link is associated with a generalized link utility,

Va+"a+
⇡

Va where Va represents the deterministic utility, "a represents the GEV distributed random/probabilistic utility,

and
⇡

Va is non-probabilistic (e.g., the risk of the network’s being disrupted due to earthquake or variability in travel
times). Drivers make their choices based on the perceived utility Va + "a, which is in accordance with conventional
random utility-based discrete choice models. At each decision node (e.g., intersections) i, drivers are supposed to
evaluate the downstream Non-Probabilistic Uncertainties (NPU). NPU refers to the utilities of some uncertainties
which are quantitative but their distributions are unknown or cannot be precisely perceived. For example, the utility of
potential maximum delay in Bell (2012) can be viewed as NPU. We further assume that drivers evaluate downstream
NPU in a short-sighted way (Fonzone et al., 2012) that only the utility of node i is associated with downstream NPU
of attractive links A+H

i . Thus, the expected utility ei (the exposure to the downstream NPU) at node i is represented as

ei =
X

k2A+H
i

Pk ·
⇡

Vk (1)

where Pk is the probability of selecting link k. The utility of node i is assumed to be a function of the exposure to the
downstream NPU and the number of alternative links |A+H

i |. For example, a possible definition of node utility could
be:

Vi =

P
k2A+H

i
Pk ·

⇡
Vk

|A+H
i |

(2)

Thus, more attractive links would help to increase the node utility. Imagine a traveler facing only one link, with both
the utility of NPU and the utility for the node being equal to -10. If there are two links with a utility of -10, with the
choice probability of 0.5 for both links, then the utility for the node according to Eq. (2) becomes (-10 ⇥ 0.5 - 10⇥
0.5) / 2 = -5. This implies that even though the uncertainty exposure is the same, additional alternatives would reduce
the risk of being limited to one choice.
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Furthermore, both link utilities and node utilities are assumed to be additive in the network level so that a sum can
be attained as the trip utility. Route choice then becomes the result of a sequential decision-making process in which
link choices are made consecutively. In the decision process, a rational driver is supposed to choose the strategy that
maximizes the utility achieved from his / her trip.

2.2. Two fundamental rules

Consider a trip utility represented by the sum of the deterministic link and node utilities,
P

a2A paVa +
P

i2I piVi,
which is a generalization of that presented by Marcotte and Nguyen (1998) that considers link and node traversal cost
(disutility). A trip-maker with a given origin and destination pair takes the optimal strategy that seeks the shortest
hyperpath maximizing the trip utility. By imposing the Markov transition property from nodes to links such that
pa = Pa|i(a) · pi(a), a basic mathematical programming model for the optimal strategy problem can be established as
follows:

max
X

a2A

paVa +
X

i2I

piVi

s.t.

8>>>>>>>>>>><
>>>>>>>>>>>:

P
a2A+i

Pa �
P

a2A�i
Pa =

8>>>>><
>>>>>:

�1, if i = s
1, if i = r
0, others

pa = Pa|i(a) · pi(a), a 2 A+i
pi = 1, i 2 {r, s}

(3)

The first constraint ensures the in-out dependency, the second represents the Markov link transition probability, and
the third constraint represents the end point (origin and destination) constraints.

The solution to this problem can be reduced to two questions:

(1) Which links should be considered as alternatives in the optimal strategy?
(2) What are the optimal link choice probabilities? These two questions are answered by the following hyperpath

rule (Section 2.3) and the GEV based N-GEV link choice rule (Section 2.4), respectively.

2.3. Hyperpath rule

The concept of hyperpath originates from hypergraph theory. In hypergraphs, a hyperarc is allowed to connect
to more than two vertices, unlike standard graphs. In general graphs, a hyperarc can be deemed as an attractive
link set at a node. Hyperpath is a sub-hypergraph connected by hyperarcs from the source to the target. There are
possibly infinite hyperpaths in general transportation networks given an origin-destination pair. Supposing that there
are many possible strategies to make out of all hyperpaths, we may naturally have the notion of the shortest hyperpath
corresponding to the optimal strategy. Essentially a collection of paths (with many common links) as hyperpath is, it
is also suggested to understand hyperpath as a potentially optimal link set in the context of route choices (Fonzone
et al., 2012). The concept of hyperpath has been explicitly or implicitly applied in transportation fields, such as
frequency-based transit assignment (Nguyen and Pallottino, 1988; Spiess and Florian, 1989), time-dependent least-
expected time path problems (Miller-Hooks, 2001), bush-based tra�c assignment (Dial 1971; Dial, 2006; Bar-Gera,
2002), and robust route guidance with uncertain networks (Bell, 2009; Bell et al., 2012).

In the route choice context, the hyperpath rule is sometimes used to determine the choice set, whether it is implicit
or explicit. For example, Dial (1971) defined an intuitive rule to find e�cient paths, in which the hyperpath is explicitly
given; in this case, the link choice probability can be attained easily by accessing each link in the order of incremental
weights. In contrast, for an optimal strategy, the hyperpath is interdependent with the specification of link choice
probability such that the problem becomes more complicated.

Now we define the strategy utility from node i to the destination s based on the condition that link a is utilized.
This can be represented by

Vis|a = Va + V⇤js (4)
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Then the utility of the optimal strategy is then represented by the maximal strategy utility as

V⇤is = max
k2A+i

Vis|k (5)

Imagine an intermediate state of the strategy utility V 0is before reaching the optimum, if taking another link can improve
the strategy utility, then the link should be considered attractive. In other words, the link is considered potentially
optimal (Fonzone et al., 2012). This rule is called hyperpath rule and is formulated as

Vis|a = Va + V⇤js > V 0is ) a 2 A+H
i (6)

Note that the hyperpath rule is an su�cient condition to determine the strategies that are potentially optimal instead
of optimal strategy (shortest hyperpath). Optimal strategy hyperpath is actually a subset of hyperpath. According to
Nguyen and Pallottino (1989), there are three characteristics of a hyperpath H:

(1) As a graph, H is acyclic.
(2) H has an unique origin and an unique destination.
(3) Every node i 2 IH and every link a 2 AH belong to at least one path in H.

2.4. N-GEV link choice rule

The N-GEV model for route choice was specified as JNG in Papola and Marzano (2013). Figure 2 shows an
example of a JNG choice network representation for a route choice from Node 1 to Node 9 in a nine-node Manhattan
network. The physical network (left) can be converted into the CNL-type tree network (right), by which the N-GEV-
type link choice can be incorporated.

From this, the GEV-based link choice rule can be established. Given the JNG generating function Gan (Papola and
Marzano, 2013) associated with link an, where n denotes the choice set level, the following behaviroral assumption
regarding link choice must be satisfied:

Pan |an�1 / ↵an�1,anG
✓an /✓an�1
an ,8a 2 A+H

i (7)

where ↵an�1,an is the degree of overlapping of choice alternative an�1 to an (an�1 and an are in di↵erent nests) and
should be non-negative. The JNG generating function is recursively given by

Gan = eVan /✓an

X

an+12A+H

↵an,an+1G
✓an�1 /✓an
an+1 (8)

Note that Gan = eVan /✓an for A+H
j(an) = ;. Thus, the link choice probability within A+H

i can be written as

Pan |i(an) = Pan |an�1 =
↵an�1,anG

✓an /✓an�1
a

P
k2A+H

i(kn�1)
↵kn�1,knG

✓kn /✓kn�1
k

(9)

1 2 3

4 5 6

7 8 9

1

1-4 1-2

4-7 4-5

7-8 5-8

2-5 2-3

5-6 3-6

8-9 6-9

C1

C2

C3

C4

Fig. 2. Example of a joint network-generalized extreme value (JNG) route choice network (right) representation for a nine-node Manhattan network
(left): route choice from Node 1 to Node 9 is discretized as four sequential levels of link choices (C1 - C4)

tonny.achilles
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The path choice �rs, that is, the sequences of consecutive links from the origin node r to the destination node s, is
the result of sequential link choices. As the GEV properties propagate across the network, according to the GEV-
inheritance theorems (Daly and Bierlaire, 2006), the corresponding path choice probability can be written as

p�rs = pr · Pa1 |r · Pa2 | j(a2) · · · Pam | j(am�1) · ps =
Y

an2�rs

Pan | j(an�1) (10)

Thus, for a given path �rs, as j(an�1) = i(an), we have

p�rs =
Y

an2�rs

Pan |i(an) =
Y

an2�rs

↵an�1,anG
✓an /✓an�1
a

P
k2A+H

i(kn�1)
↵kn�1,knG

✓kn /✓kn�1
k

(11)

In this way, the N-GEV model allows the route choice problem to be converted into a sequential link choice problem
while maintaining the GEV property. The hyperpath-based N-GEV constrains the choice set within the optimal
strategy choice set (links of the shortest hyperpath) instead of infinite choice set (all links).

3. Solution Algorithm to the Hyperpath-based N-GEV Model

3.1. Generalized Bellman equation for optimal strategy

Now that we have the link choice rule, let us focus on the decision-making process at decision node i. The utility
of a strategy for a Markov decision process (Puterman, 2005) can, in general, be represented by

Vh
is =

8>>>><
>>>>:

0, if i = s
Vi +

X

a2A+i

Pa|i(a) · (Va + Vh
js), others (12)

where Vh
is represents the utility of a hyperpath h. In our case, strategic decision making happens only within the links

involved in the hyperpath that are identified as attractive. Unattractive links is also allowed in case there is any better
solution than strategic decision. The corresponding strategic hyperpath utility is given by:

Vh
is =

8>>>>>>><
>>>>>>>:

0, if i = s
Vi +

X

a2A+H
i

Pa|i(a) · (Va + Vh
js), if i , s and i 2 IH

Va + Vh
js, others

(13)

Consequently, the corresponding generalized Bellman equation for optimal strategy hyparpath h⇤ is given by

Vh⇤
is =

8>>>>>>>>><
>>>>>>>>>:

0, if i = s

max
a2A+H

i


Vi +

X

a2A+H
i

Pa|i(a)(Va + Vh⇤
js )
�
, if i , s and i 2 IH

max
a2A+i

(Va + Vh⇤
js ), others

(14)

3.2. The modified SFdi algorithm

A greedy-type algorithm, which resembles the Spiess-Florian algorithm with directed node search and admissive
node potentials (SFdi) proposed by Ma et al. (2013), can be used to solve for the hyperpath, together with GEV-
correspondent link-choice probabilities. In order to be in line with the original SFdi algorithm, we let V denote the
disutilities instead of utilities in Algorithm 1 and the algorithm actually seeks for a minimization of disutility, which
is equivalent to solve the original problem that maximizes the utility. Additionally, if the strategy disutilities have
a lower bound (denoted by V⇤is), then the lower bound can be used as admissive node potentials to speed up the
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Algorithm 1 SFdi algorithm with GEV link choices (Ao and Ac denote open and closed links. For simplicity, let
a ⌘ an, ✓i ⌘ ✓an�1 , ✓ j ⌘ ✓an ,↵i, j ⌘ ↵an�1,an )

1: ⌅ Initialization
2: V 0is  1,8i 2 I � {s}; V 0ss  0; Wi  0,8i 2 I; pi  0, i 2 I � {r}; pr  1; A+H

i  ;;
3: j s, Ao  ;; pa  0, Pa|i(a)  0,8a 2 A;
4: ⌅ Optimal strategy calculation (backward pass)
5: while V 0js + Va > V 0rs and Ao , ; do
6: for each link a 2 A�j do
7: if a < Ao then
8: Ao  Ao + {a};
9: end if

10: end for
11: a argmina2Ao�Ac (Va + V 0js) + V⇤is;
12: j i(a); Ac  Ac + {a}; Ao  Ao � {a}; V⇤js  V 0js
13: if V 0is > Va + V⇤js and a 2 Ao � Ac then
14: A+H

i(a)  A+H
i(a) + a; // Hyperpath rule

15: if j = s then
16: Wa  exp (Va/✓i);
17: else
18: Wa  exp (Va/✓i) · (↵i, jWj(a))✓ j/✓i // GEV inheritance
19: end if
20: Pa|i(a)  Wa

Wi+Wa
; Wi  Wi +Wa; // Link choice rule

21: if V 0is >
P

k2A+H
i

Pk|i(k) · (Vk + Vjs) + Vi then
22: V 0is  

P
k2A+H

i
Pk|i(k) · (Vk + Vjs) + Vi // Bellman Equation for attractive links

23: end if
24: else
25: V 0is  Va + Vjs // Bellman Equation for unattractive links
26: end if
27: end while
28: ⌅ Proportion calculation (forward pass)
29: for each a 2 AH with the decreasing order of V⇤js + Va + V⇤is do
30: pa  Pa|i(a) · pi(a); pj(a)  pj(a) + pa; // One-step Markov transition
31: end for

calculation. For example, by setting a physical possible maximum travel speeds, the least possible arrival time can
be calculated with street distances. If the travel time is taken as the disutility, an admissive node potential is the least
possible travel time which can be calculated by shortest path algorithms. The corresponding pseudo code is shown as
Algorithm 1. The performance is the same as the original SFdi algorithm. The details are shown in Ma et al. (2013).
Algorithm 1 illustrates the algorithm structure for the proposed framework leaving Vi and Va to be specified according
to application contexts and modelers. As an example, the specifications referred to in Eq. (2), Eq. (15) and Eq.
(16) are used in the numerical studies, which can be considered as possible specifications for dealing with travel time
uncertainties.

4. Numerical Studies

The model and algorithm described in Section 3 provide a general framework for modeling route choice under
uncertainties with a GEV-based link-choice rule. Next, we explain the simple numerical results with the proposed
model. Simple utility functions and parameter settings were used in the numerical studies. Because Papola and
Marzano (2013) compared N-GEV with many other route choice models on a four-link small network, the numerical
studies focused on the comparison of two hyperpath-based models: the inverse proportionality model (Bell, 2009) and
the N-GEV model from this paper. More appropriate specification/selection of the form of link deterministic utility,
the degree of membership, and homogeneity parameters are beyond the scope of this paper.
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4.1. Specifications of utility functions

In Bell (2009), although the link choice rule is simply assumed inversely proportional to the potential maximum
delay da (deemed as non-probabilistic disutility) and seeks the minimization of expected trip travel time. When
making decisions at intersections, the risk aversion can be viewed as a Logit model with a special risk-averse utility
� ln da, which is a special case of Constant Relative Risk Aversion (CRRA) with the Arrow-Pratt index of risk aversion
equals -1 (de Palma and Picard, 2005). In this sense, the Logit link choice results in Pa / e� ln da = 1/da.

Appropriate specification of risk aversion in the model obviously requires more discussion and is beyond this paper.
In the numerical studies, we assume the travel time lower bound ta,min and upper bound ta,max of link a are known (e.g.,
5 and 95 percentile travel times). The di↵erence of the bounds corresponds to da. We considers travelers percept link
travel times pessimistically and the link utility is slightly di↵erent from Bell (2009) and is set as:

Va = �ta,max (15)

Also, we simply set the utility of uncertainties as negative potential maximum delay such that

⇡
Va = �(ta,max � ta,min) (16)

As for Vi, we stick to Eq. (2) that is mentioned in Section 2.1.

4.2. Parameter settings for N-GEV model

As for the allocation parameters ↵an,an�1 and the error-scale parameters ✓an in the N-GEV model for route choices,
Hara and Akamatsu (2012) used the following simple specification:

↵an,an�1 ⌘ ↵i =
1
|E�i |

(17)

✓an ⌘ ✓ j =
Dj,s

Dr, j
(18)

where |E�i | denotes the number of links that belong to e�cient paths connected to node i, and Dr,i denotes the least
distance between node r and node i.

In contrast, Papola and Marzano (2013) suggest the following specifications:

✓an ⌘ ✓ j =

p
6�Dj,s

⇡
(19)

↵an,an�1 ⌘ ↵i, j =
Nr,i/(Dr,i + Di, j)P

k2A�j
Nr,i/(Dr,i(k) + Di(k), j)

(20)

where Nr,i denotes the number of paths connecting i for the origin node r, and � is the proportionality coe�cient of
variance of path utility U�k , which is assumed to be proportional to the least distance of �k:

�2(U�k ) = �Dr,s (21)

There is still no global agreement on the specification of N-GEV parameters and more empirical studies are required
for the best parameter settings. Besides, unlike Dial’s e�cient paths, the hyperpath is not a prior so that it is not easy
to set ↵i, j in advance. How to set the N-GEV parameters is beyond this paper. Without incurring more complexities,
in the numerical studies simple settings are used by following Papola and Marzano (2013).
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Fig. 3. A three-node toy network with travel time correlations

4.3. Toy network results

To illustrate the di↵erence among models, experiments are conducted on a toy network with 3 nodes and 4 links
(shown in Figure 3). There are 3 possible paths from node A to node C:

• path 1 (node A! link 1! node C)
• path 2 (node A! link 2! node B! link 3! node C)
• path 3 (node A! link 2! node B! link 4! node C)

The test scenarios are created as follows: first we would like to see the results for a scenario that the possible paths
are equally attractive (Table 1); then the potential maximum delay of link 4 is increased to double (Table 2); finally
the potential maximum delay is increased to 6 times (Table 3) of that in the first scenario.

Table 1. Marginal probabilities of scenario I (texts in bold indicate the changing values)

link 1 link 2 link 3 link 4 path 1 path 2 path 3
tmin, tmax 10, 20 10 � k, 20 � 2k k, 2k k, 2k 10, 20 10, 20 10, 20

Scenario I (a): k = 2
IP 0.4444 0.5556 0.2778 0.2778 0.4444 0.2778 0.2778
SL 0.3333 0.6667 0.3333 0.3333 0.3333 0.3333 0.3333
NG 0. 4231 0.5769 0.2884 0.2884 0.4231 0.2884 0.2884

Scenario I (b): k = 8
IP 0.1667 0.8333 0.4167 0.4167 0.1667 0.4167 0.4167
SL 0.3333 0.6667 0.3333 0.3333 0.6667 0.3333 0.3333
NG 0.3498 0.6502 0.3251 0.3251 0.645 0.1775 0.1775

A variable k is used to represent link travel times to introduce the link correlations. For each scenario, k is set to
two di↵erent values to scale the correlations. The increase of k means less overlap between path 2 and 3 and thus
less correlations. Three models with di↵erent link choice rules are analyzed: Inverse Proportionality (IP), Sequential
Logit (SL) and Network GEV (NG). For NG model parameters, we stick to the settings recommended by Papola and
Mazarno (2013) in Eq. (19) and Eq. (20).

Comparing scenario I (Table 1) with scenario II (Table 2), IP is obviously more sensitive to the changes in tmax than
SL and NG. On the contrary, benefited from the discrete choice model, SL and NG are less sensitive. The inheritance
property of SL and NG, which enable drivers to make far-sighted decision, also accounts for the sensitivity. In other
words, IP drivers would definitely try to avoid links with large potential delay while SL and NG drivers would think
about the tra�c situations. If to take a link with large potential delay may actually results in less travel time for
remaining links, SL and NG drivers would feel comfortable to consider the link attractive.

Similar to Dials approach (Dial, 1971), SL results in the Logit route choice results. At the same time, since
the utility function also considers the potential maximum delays (Eq. (15)), SL can also react on the changes in
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Table 2. Marginal probabilities of scenario II

link 1 link 2 link 3 link 4 path 1 path 2 path 3
tmin, tmax 10, 20 10 � k, 20 � 2k k, 2k k, 3k 10, 20 10, 20 10, 20 + k

Scenario II (a): k = 2
IP 0.4444 0.5556 0.3704 0.1852 0.4444 0.3704 0.1852
SL 0.4683 0.5317 0.4683 0.0634 0.4683 0.4683 0.0634
NG 0.4960 0.5040 0.4863 0.0177 0.5040 0.4863 0.0177

Scenario II (b): k = 8
IP 0.1667 0.8333 0.5556 0.2778 0.1667 0.5556 0.2778
SL 0.4999 0.5001 0.4999 0.0002 0.4999 0.4999 0.0002
NG 0.4997 0.5003 0.4996 0.0007 0.4997 0.4996 0.0007

Table 3. Marginal probabilities of scenario III

link 1 link 2 link 3 link 4 path 1 path 2 path 3
tmin, tmax 10, 20 10 � k, 20 � 2k k, 2k k, 7k 10, 20 10, 20 10, 20 + 5k

Scenario III (a): k = 2
IP 0.4444 0.5556 0.4762 0.0794 0.5556 0.4762 0.0794
SL 0.5000 0.5000 0.5000 0 0.5000 0.5000 0
NG 0.5000 0.5000 0.5000 0 0.5000 0.5000 0

Scenario III (b): k = 8
IP 0.1667 0.8333 0.7143 0.1190 0.8333 0.7143 0.1190
SL 0.5000 0.5000 0.5000 0 0.5000 0.5000 0
NG 0. 5000 0.5000 0.5000 0 0.5000 0.5000 0

uncertainties. In scenario I (Table 1) when each route is evenly attractive in both minimum and maximum travel
times, SL results in equal proportions for each route. In scenario III (Table 3), due to the increase of uncertainties on
link 4, SL only sets the equal proportion to paths 1 and 2 since path 3 turns out to be unattractive.

All scenarios show NG penalizes correlated routes. As the increase of k, the choice probabilities of paths 2 and 3
tends to decrease. Compared with Dial-based N-GEV approach, according to the network uncertainties, the choice
set may be di↵erent. For example, as the increase of the delay to as large as 6 times of the minimum travel time on
link 4 (Table 3), it becomes no more attractive.

4.4. Small-grid network results

Numerical tests comparing the inverse proportionality hyperpath (Bell, 2009) with the N-GEV hyperpath were
conducted on the same network used by Bell (2009)1. We used the same origin/destination (OD) pair of Bell’s test
scenario, that is, the travel from Node 1 to Node 37. For simplicity, the experiments on Bell’s network did not
take link correlations into account and thus we focused on sequential logit as a special case of N-GEV such that
↵i, j = 1, ✓i = ✓ j = 1,8i, j 2 I.

Figure 4 shows that the N-GEV (specified as sequential logit) route choice tended to split upstream evenly because
the link travel times, as well as the remaining travel times, were similar. In contrast, the inverse proportionality model
resulted in much more preferences for links with lower potential maximum delay.

With the original input of Bell’s network, the hyperpaths for both models remained the same. This was also the
case after increasing the potential maximum delay of the link from 0.868 to 1.868 (Figure 5). However, the inverse
proportionality model reacted as expected, with the probability decreasing from 0.0952 to 0.0598 for the changed link,
whereas the N-GEV route choice proportions remained the same (equal to 0.2315). This is due to the characteristic
di↵erences between these two models; the inverse proportionality model makes a shortsighted behavior assumption,
whereas the N-GEV route choice takes the remaining routes into account.

1 The test network data (ESRI shape files) can be downloaded at the author’s website (https://sites.google.com/site/tonny2vblog/home/data.tar.gz).
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Fig. 4. Hyperpath results with original input from Bell (2009), the numbers are marginal link choice probabilities.

Fig. 5. Hyperpath results after increasing da of a link (id = 9) in the shaded area from 0.868 to 1.868

In Figure 6, by increasing the potential maximum delay to 2.868, the link choice probability inverse proportionality
model still provided the same hyperpath and decreased the choice probability of the changed link. In contrast, the
hyperpath of the N-GEV route choice changed and avoided using the changed link. It turns out that the inverse
proportionality model follows the risk-averse choice rule, allowing additional alternatives to be considered. Also, it
shows that the hyperpaths for the two models are not necessarily the same.

To compare the accuracy of the path probabilities, we changed seven links while keeping both travel time and
potential maximum delay the same. Figure 7 shows the results from the inverse proportionality model and the N-
GEV model. Because the links in the rectangular area have the same properties, the routes shown in Figure 8 should
have the same choice probability. For the inverse proportionality model, the route choice possibilities include the
following:

p1 = 0.6248 ⇥ 0.3124/(0.3124 + 0.3124) = 0.3124
p2 = 0.6248 ⇥ 0.3124/(0.3124 + 0.3124) ⇥ 0.2325/(0.2325 + 0.2325) ⇥ 0.1024/(0.1024 + 0.1301) ⇡ 0.0688
p3 = 0.6248 ⇥ 0.3124/(0.3124 + 0.3124) ⇥ 0.2325/(0.2325 + 0.2325) = 0.1562
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Fig. 6. Hyperpath results after increasing da of the link (id=9) in the shaded area from 1.868 to 2.868

Fig. 7. Hyperpath results with further changes in a set of links within the red rectangle (id = 15, 16, 22, 23, 73, 74, 75) with ta = 1, da = 1

For the N-GEV model, the route choice possibilities are given as

p01 = 0.5045 ⇥ 0.1216/(0.1216 + 0.3829) ⇡ 0.1216
p02 = 0.5045 ⇥ 0.3829/(0.1216 + 0.3829) ⇥ 0.4706/(0.2189 + 0.4706) ⇥ 0.2189/(0.2189 + 0.2517) ⇡ 0.1216
p03 = 0.5045 ⇥ 0.3829/(0.1216 + 0.3829) ⇥ 0.2189/(0.2189 + 0.4706) ⇡ 0.1216

As reflected in this simple numerical example, the N-GEV model is preferable to the inverse proportionality model in
capturing the choice possibilities correctly.

5. Conclusions and Future Research Directions

By integrating the hyperpath and N-GEV methodologies, this paper presents a general initial framework based
on previous studies for modeling route choice behavior under uncertainties and demonstrates the advantages of the
proposed approach over the inverse proportionality hyperpath in producing more reasonable link choice possibilities
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Fig. 8. Three alternative routes

as well as can capture link correlations. In addition to providing insight into dealing with route choices with uncer-
tainties with hyperpath approaches, the added benefit of using the N-GEV framework is that the model can deal with
randomness by way of utility maximization. The hyperpath takes uncertainty exposure into account in dealing with
unperceived uncertainties beyond randomness. In specific contexts that have been developed, the uncertainty may re-
sult from di↵erent sources (e.g., uncertain wait time for transit lines or uncertain potential maximum delay on roads),
and is likely to develop according to the severity of the conditions considered, for example, those involving hazardous
material transportation, transportation against terrorists’ attack, and evacuation transportation after disasters.

Although integration of the hyperpath and N-GEV is promising, a considerable amount of work remains. Firstly,
the parameter settings should be investigated further; specifically, it is important to clarify how the degree of member-
ship for a non-predetermined hyperpath is determined e�ciently in large-scale networks. Iterative search initializing
with sequential logit would be helpful, given that the hyperpath and the degree of membership should stabilize eventu-
ally. Secondly, the current model framework does not consider the reinforcement learning mechanism for individuals,
which can be developed to a greater extent. Finally, empirical studies are necessary. Many unanswered questions
remain; however, the route choice data collected by global positioning systems would be helpful with regard to pa-
rameter estimations and model adjustments.
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